
Partie I - Coloration de graphes
L’objectif de cette partie est de proposer une implémentation d’une solution au problème de
coloration d’un graphe.

I.1 - Définitions et propriétés

Soit G = (S, A) un graphe fini non orienté avec S son ensemble de sommets et A son ensemble
d’arêtes. On suppose que le graphe est simple c’est-à-dire qu’il ne comporte pas d’arêtes {s, s} et
que chaque paire de sommets est reliée par au plus une arête. On note n, le cardinal de l’ensemble
S. Les sommets sont numérotés de 0 à n − 1.
Étant donné un entier naturel k, une k-coloration des sommets de G est une application c :
S → {0, 1, . . . , k−1} telle que pour chaque arête {x, y} d’extrémités x et y, c(x) ̸= c(y). Si c(x) = i,
on considérera que la couleur i est affectée au sommet x. Si G admet une k-coloration, il est k-
coloriable. On définit le nombre chromatique χ(G) d’un graphe G fini par χ(G) = min{k ∈ N, G
est k-coloriable }.
Une clique est un sous-ensemble de sommets du graphe, adjacents 2 à 2 . On dit qu’un graphe est
complet si il est une clique. On notera Kp le graphe complet à p sommets.
On pose ω(G) = max {p ∈ N | Kp est une clique de G}, avec N l’ensemble des entiers naturels.

0

1 2 3

0

1

2

3

Figure 1 – De gauche à droite : le graphe G1 et le graphe K4

Q1. Le graphe G1 de la figure 1 ci-dessus est-il 2-coloriable ? Justifier votre réponse.
Q2. Pour un entier naturel n ⩾ 1, déterminer le nombre chromatique du graphe Kn.
Q3. Montrer que pour tout graphe G à n sommets, on a ω(G) ⩽ χ(G) ⩽ n.

I.2 - Algorithmique et programmation

La coloration d’un graphe G avec χ(G) couleurs est un problème complexe. Dans cette sous-partie,
nous présentons une heuristique permettant de construire une coloration d’un graphe donné.
Dans la suite, on implémente un graphe par sa représentation en liste d’adjacence, de type Ocaml
type graphe = int list array.

Q4. Définir en Ocaml la représentation en liste d’adjacence du graphe G1.
Q5. Écrire une fonction degres_sommets : graphe -> int*int array qui prend en para-

mètre la représentation d’un graphe et renvoie un tableau t tel que t.(i) contient un
couple (di, i) où di est le degré du sommet i.

Q6. On suppose qu’on dispose d’une fonction Ocaml tri : ’a array -> unit qui trie un
tableau dans l’ordre décroissant. En particulier sur un tableau de couples cette fonction
trie selon le premier élément du couple. En déduire une fonction tri_degres : graphe
-> int array qui prend en paramètre la représentation d’un graphe et renvoie un tableau
contenant les numéros des sommets, triés par degrés décroissants.

1

Q7. Écrire une fonction Ocaml test : graphe -> int array -> bool qui prend en para-
mètre la représentation d’un graphe G et un tableau tc tels que tc.(i) contient la couleur
du sommet i. La fonction renvoie true si tc est une 2-coloration pour G.

On considère ci-dessous, l’algorithme de coloriage de Welsh-Powel.

Algorithme 1 Welsh-Powel (coloration de graphe)
fonction WP(G)

▷ Entrée : un graphe G à n sommets ◁
▷ Sortie : un tableau d’entiers contenant en position i la couleur du sommet numéro i ◁
Ordonner les sommets selon les degrés décroissants dans un tableau td
colorie : tableau de taille n initialisé à -1
▷ À terme, colorie associera à chaque i, la couleur du sommet i ◁
tant que il reste des sommets à colorier faire

Chercher dans td le premier sommet non colorié
Le colorer avec la plus petite couleur c non utilisée
Colorier avec cette même couleur, en respectant leur ordre dans td, tous
les sommets non coloriés et non adjacents à des sommets de couleur c

renvoyer colorie

Q8. Que contient colorie à la fin si on déroule l’algorithme de coloriage ci-dessus avec le
graphe G1 en entrée ?

Q9. Écrire une fonction Ocaml adjacent : graphe -> int array -> int -> int qui prend
en paramètre la représentation d’un graphe, un tableau tc contenant la couleur des som-
mets coloriés, le numéro d’un sommet s, une couleur c et renvoie true si le sommet s est
adjacent à un des sommets de couleur c, false sinon.

Q10. Proposer une implémentation en Ocaml de l’algorithme de Welsh-Powel.

Application

Le tableau ci-dessous représente les liens d’amitiés entre huit étudiants : Alice (A), Béatrice (B),
Carl (C), David (D), Eloïs (E), Fanny (F), Gary(G) et Hedge (H).

Prénom A B C D E F G H
Ami-e avec B,C,G A,C,E,F A, B E,F B,D,F B,D,E,H A,H F,G

On souhaite créer des groupes de travail. Dans le contexte de l’application, un groupe contient au
moins 2 étudiants tel que chaque étudiant soit dans un groupe différent de celui de ses amis.

Q11. Modéliser la situation par un graphe et en déduire une solution.

Partie II - Satisfiabilité d’une formule propositionnelle
Une formule propositionnelle est construite à l’aide de constantes propositionnelles, de variables
propositionnelles et de connecteurs logiques. Les connecteurs logiques seront notés ¬ (négation),
∧ (conjonction), ∨ (disjonction). Dans cette partie, on étudie le problème de satisfiabilité d’une
formule et son application à la détermination d’une conséquence logique entre 2 formules pro-
positionnelles. Le problème CNF-SAT est défini de la façon suivante. Étant donné une formule
sous forme normale conjonctive, admet-elle un modèle, c’est-à-dire une valuation des variables,
qui rende la formule vraie ? On souhaite écrire un programme qui teste si une valuation donnée
rend une telle formule vraie.

2

Dans cette partie, on considère que si une formule contient n variables propositionnelles, elles
seront désignées par x0, x1, . . . , xn−1.
On définit le type OCaml suivant :

type clause = Var of int
| Non of clause
| Ou of clause * clause

L’argument du constructeur var correspond au numéro de la variable concernée.
Une formule sous forme normale conjonctive ayant m clauses sera implémentée par une liste de m
clauses. Les tableaux seront implémentés par le module Array dont les éléments suivants pourront
être utilisés :

— type ’a array, notations [| |]
— création d’un tableau : make : int -> ’a -> ’a array
— accès à l’élément d’indice i du tableau t : t.(i)
— modification de l’élément placé à l’indice i du tableau t : t.(i) <- v
— taille du tableau : length : ’a array -> int

Q12. Donner le code OCaml correspondant à la clause c = (x0 ∨ x1) ∨ ¬x2.
Q13. Donner le code OCaml permettant de définir la formule : f = (x0 ∨x1 ∨¬x2)∧(¬x1 ∨x2).
Q14. Écrire une fonction de signature evalue_clause : clause -> bool array -> bool

qui prend en paramètre une clause et une valuation représentée par un tableau contenant
à l’indice i, la valeur de vérité de la variable xi et renvoie la valeur de vérité de la clause.

Q15. Écrire une fonction de signature evalue_FNC : clause list -> bool array -> bool
qui prend en paramètre une liste de clauses et une valuation représentée par un tableau
contenant à l’indice i, la valeur de vérité de la variable xi et évalue une formule donnée
sous forme normale conjonctive.

Q16. Quel résultat obtient-on avec la formule F et le tableau de valuations
[|false; true; true|] ? Justifier.

On souhaite énumérer toutes les valuations possibles pour un nombre de variables fixé. Étant
donné une valuation, on considérera que si la valeur true correspond à 1 et la valeur false
correspond à 0 , la valuation suivante correspond à l’ajout de 1 au nombre binaire associé. Ainsi,
la valuation suivante de [|false; true; false|] est [|false; true; true|]. On considère
que la valuation suivante de [|true; true; true|] n’existe pas.

Q17. Écrire une fonction de signature suivant : bool array -> bool qui prend en para-
mètre un tableau de booléens, lui attribue la valuation "suivante" si possible et renvoie
true ; sinon renvoie false.

Q18. En déduire une fonction de signature satisfiable : clause list -> int -> bool
qui prend en paramètre une formule en forme normale conjonctive, son nombre de variables
et renvoie true si il existe une valuation qui rend la formule vraie, false sinon.

Q19. Quelle est la complexité en temps de cette fonction par rapport aux paramètres d’entrée ?
Q20. Proposer une stratégie de retour sur trace pour résoudre le problème de satisfiabilité

d’une formule.

Conséquence logique entre 2 formules

Définition Une formule ϕ est une conséquence logique d’un ensemble fini de n formules Γ =
{F1, . . . , Fn}, n étant un entier naturel supérieur ou égal à 1 , si tout modèle de ϕ est un
modèle de Γ. On note Γ |= ϕ. On admettra que toute formule admet une formule équivalente
sous forme normale conjonctive.

3

Q21. Déduire de la fonction précédente, un algorithme en pseudo-code permettant de détermi-
ner si une formule F est une conséquence logique d’un ensemble de formules Γ : F1, . . . , Fn.

Q22. Afin de déterminer si Γ |= ϕ, on peut prouver le séquent Γ ⊢ ϕ. Justifier cette méthode,
puis construire un arbre de preuve qui démontre le séquent Γ : P → Q, Q → R, P ⊢ P
où P, Q, R désignent des variables propositionnelles représentant des formules logiques, à
partir des règles d’inférence de la déduction naturelle ; les règles et notations utilisées seront
clairement mentionnées.

Partie III - Autour des tas
L’objectif est ici d’étudier et d’implémenter quelques outils autour d’une structure de données
appelée tas binomial. Un tas binomial est une structure assez proche du tas binaire (utilisé par
exemple pour réaliser une file de priorité), pour lequel la procédure de fusion de deux tas est
efficace et peu complexe.

III.1 - Arbre binomial

Définition 5 (Arbre enraciné)
Un arbre enraciné est une généralisation des arbres binaires dans laquelle un noeud peut avoir
plus de 2 fils.
La figure 2 présente un exemple d’arbre enraciné dans lequel 0 est la racine.

r

t0

t1 t2 t3

t4

Figure 2 – Exemple d’arbre enraciné

On définit un arbre enraciné (non vide) par la valeur de sa racine r et [t0, · · · , tn−1] la liste de ses
fils, chaque ti étant un arbre. Un arbre vide est défini par Vide.
On utilisera le type suivant en Ocaml :

type ’a arbre = Vide | Noeud of ’a * ’a arbre list ;;

Par abus de notation, on confond dans la suite la racine de l’arbre et sa valeur, ainsi que les fils
d’un arbre avec leur racine.

Q23. Écrire des fonctions :
— vide : ’a arbre -> bool qui prend en entrée un arbre a et renvoie true si l’arbre a

est vide, false sinon ;
— racine : ’a arbre -> ’a qui prend en entrée un arbre a et renvoie la racine de a si

a est non vide ;
— fils : ’a arbre -> ’a arbre list qui prend en entrée un arbre a et renvoie la liste

des arbres, fils de la racine de a.

4

Définition 6 (Arbre binomial)
Un arbre binomial ak d’ordre k ≥ 0 est un arbre enraciné dans lequel les fils de chaque nœud sont
ordonnés. II est défini récursivement comme suit :

i) a0 = Noeud(r,[]) est constitué d’un nœud unique, la racine. Cet arbre est d’ordre 0 ;
ii) pour k ∈ N, soit ak = Noeud(r, [t0; ...; tn−1]) un arbre enraciné non vide. ak est un arbre

binomial d’ordre k si :
— t0 est un arbre binomial d’ordre (k − 1) ;
— Noeud(r, [t1; ...; tn−1]) est un arbre binomial d’ordre (k − 1) ;
— la racine de t0 a une valeur supérieure ou égale à r.

La figure 3 donne un exemple d’arbre binomial d’ordre 3. Les valeurs dans l’arbre sont des entiers.

0

1 2

3

4

5 6

7

Figure 3 – Exemple d’arbre binomial d’ordre 3

Q24. Écrire une fonction arbreBin : ’a arbre -> ’a arbre -> ’a arbre qui construit, à
partir de deux arbres binomiaux a1 et a2 d’ordre k − 1, un arbre binomial ak d’ordre k
contenant les mêmes valeurs que a1 et a2.
Dans la suite, on note a1 ⊕ a2 cette opération.

Q25. Montrer par récurrence que la racine d’un arbre binomial d’ordre k a exactement k fils.
Q26. En déduire une fonction ordre : ’a arbre -> int qui renvoie l’ordre d’un l’arbre

binomial a.
Q27. Montrer qu’un arbre binomial a d’ordre k possède 2k nœuds.
Q28. Écrire une fonction récursive estUnArbreBinomial : ’a arbre -> bool qui renvoie

true si a est un arbre binomial, false sinon.

III.2 - Tas binomial

Un tas est une structure de données de type arbre qui permet en particulier de retrouver directe-
ment un élément qui doit être traité en priorité.

Définition 7 (Tas binomial)
Soient k ≥ 0 et T = {a0, · · · , ak} un ensemble d’arbres. T est un tas binomial de longueur k + 1
si, pour tout i ∈ [|0, k|], ai est soit un arbre vide, soit un arbre binomial d’ordre i. Si i = k, ai ne
peut, de plus, pas être vide et ak est donc un arbre binomial d’ordre k.

On note dans la suite |T| le nombre de nœuds d’un tas T, qui est le nombre total de noeuds des
arbres qui constituent T.
En Ocaml, on représentera un tas binomial par le type suivant :

5

type ’a tasbin = { arbres : ’a arbre array; mutable taille :
int };;

Le tableau arbres sera d’une grande taille N = 100 et contiendra les différetns arbres composant
le tas binomial. Le champ taille sert à savoir exactement combien de cases du tableau sont
utilisées.
Par exemple si T = {a0; a1; a2}, alors taille vaudra 3 et arbres aura des arbres non vides dans
les cases 0,1,2 ; toutes les autres cases contenant Vide (l’arbre vide).

Définition 8 (Signature d’un tas) Soit T = {a0, · · · , ak} un tas binomial de longueur k + 1. On
appelle signature de T la suite s0 · · · sk telle que pour tout i ∈ [|0, k|], si = 0 (respectivement si = 1
) si l’arbre ai est vide (respectivement n’est pas vide).

Q30. Soit T un tas binomial de longueur k+1. En utilisant sa signature, calculer |T| et montrer
que 2k ≤ |T| < 2k+1. En déduire k en fonction de |T|.

Q31. Écrire une fonction minimumTas : ’a tasbin -> ’a qui prend en entrée un tas T et
retourne la valeur minimum du tas. En donner la complexité en fonction de |T|.

Les tas se construisent itérativement à partir de données. On est donc amené, pour un tas T, à
ajouter un à un des éléments.
Soit p un élément que l’on souhaite ajouter à un tas binomial T non vide et déjà construit.
L’insertion de la valeur p dans le tas T se fait alors selon l’algorithme 2.

Algorithme 2 Insertion de p dans T

fonction insertion(T , p)
▷ Entrée : un tas T = {a0...ak}, une valeur p ◁
▷ Sortie : un tas (T augmenté de la valeur p) ◁
i = 0
Coder p dans un arbre binomial a d’ordre 0
tant que i<k+1 et a non vide faire

si ai est vide alors
ai devient a
a devient vide

sinon
a devient a ⊕ ai (∗ ∗ ∗)
ai devient vide

i=i+1
si a n’est pas vide alors

Ajouter a au tas T (qui devient donc de longueur k + 1)

Q32. Coder l’algorithme 2 sous la forme d’une fonction insertion : ’a -> ’a tasbin ->
unit. L’algorithme doit modifier le tas par effet de bord.

Q33. Évaluer la complexité de cet algorithme en fonction de |T|. On suppose que l’étape
marquée (∗ ∗ ∗) s’effectue en temps constant.

Q34. Donner la signature du tas résultant de l’insertion de p dans T en fonction de la signature
de T.

Q35. Donner, sans justification, un invariant de boucle pour la boucle de l’algorithme 2 per-
mettant de prouver la correction de ce dernier.

6

